Refine Your Search

Topic

Author

Search Results

Technical Paper

An Enabling Study of Neat n-Butanol HCCI Combustion on a High Compression-ratio Diesel Engine

2015-03-10
2015-01-0001
This work investigates the benefits and challenges of enabling neat n-butanol HCCI combustion on a high compression ratio (18.2:1) diesel engine. Minor engine modifications are made to implement n-butanol port injection while other engine components are kept intact. The impacts of the fuel change, from diesel to n-butanol, are examined through steady-state engine tests with independent control of the intake boost and exhaust gas recirculation. As demonstrated by the test results, the HCCI combustion of a thoroughly premixed n-butanol/air lean mixture offers near-zero smoke and ultralow NOx emissions even without the use of exhaust gas recirculation and produces comparable engine efficiencies to those of conventional diesel high temperature combustion. The test results also manifest the control challenges of running a neat alcohol fuel in the HCCI combustion mode.
Technical Paper

Combustion and Exhaust Gas Speciation Analysis of Diesel and Butanol Post Injection

2015-04-14
2015-01-0803
Experimental testing was done with a modern compression ignition engine to study the effect of the engine load and the effect of different fuels on the post injection characteristics. Two different fuels were utilized; ultra-low sulphur diesel and n-butanol. The results showed that a post injection can be an effective method for increasing the operating range of the engine load. Engine operation at high load can be limited by the peak cylinder pressure but the test results showed that an early post injection can increase the engine load without increasing the peak in-cylinder pressure. Neat butanol combustion may have a very high peak in-cylinder pressure and a very high peak pressure rise rate even at low load conditions. The test results showed that a butanol post injection can contribute to engine power without significantly affecting the peak pressure rise rate and the peak in-cylinder pressure.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Numerical Investigation on NO to NO2 Conversion in a Low-Temperature Combustion CI Engine

2021-04-06
2021-01-0506
Low temperature combustion (LTC) has been proved to overcome the trade-off between NOx and soot emissions in direct injection compression ignition engines. However, the lowered NOx emissions are accompanied by high hydrocarbon and CO emissions. Moreover, the NOx emissions under LTC has much higher NO2 concentrations compared with traditional high temperature combustion conditions. Experimental investigations have been carried out to show the hydrocarbon impact on NOx emissions and NO-NO2 conversion under various engine operation conditions, but the mechanism is less understood. The article includes numerical studies of the impact of hydrocarbons in the in-cylinder conversion of NO to NO2 during low temperature conditions in a compression ignition engine. In the present work, a stochastic reactor model with detailed chemical kinetics is utilized to investigate the reaction pathways during the NOx reduction and NO2 conversion processes.
Technical Paper

Performance of Spark Energy Distribution Strategy on a Production Engine under Lean-Burn Conditions

2021-04-06
2021-01-0476
Stronger ignition sources become more favorable under extreme lean/EGR conditions. Under those conditions, the reduced pumping loss and low combustion temperature can contribute to further engine efficiency improvement for spark ignited engines. Multicoil ignition system can enhance ignition energy as well as modulate discharge profile. The ignition energy can either be deployed through single spark gap to enhance the ignition capability of the plasma channel, or be distributed to multiple ignition sites to establish multiple flame kernels to secure flame kernel initiation. The multiple ignition coils used for energy distribution ignition strategy also consume more power, in order to maintain the stable operation of the engine under lean operation limit. In this paper, efficacy of concentrated and distributed multicoil ignition strategies were investigated on a spark ignited inline 4-cylinder production engine using a three-ignition-coil pack.
Journal Article

Impact of Spark Plasma Length on Flame Kernel Development under Flow Condition

2020-04-14
2020-01-1114
Advanced ignition systems with enhanced discharge current have been extensively investigated in research, since they are highly regarded as having the potential to overcome challenges that arise when spark-ignition engines are running under lean or EGR diluted conditions. Local flow field is also of particular importance to improve the ignitability of the air-fuel mixture in SI engines as the spark plasma channel can be stretched by the flow across the spark gap, leading to longer plasma length, thus more thermal spark energy distributed to the air-fuel mixture in the vicinity of the spark plug. Research results have shown that a constantly high discharge current is effective to maintain a stable spark plasma channel with less restrikes and longer plasma holding period.
Journal Article

Electrical Waveform Measurement of Spark Energy and its Effect on Lean Burn SI Engine Combustion

2019-12-19
2019-01-2159
The conventional transistor coil ignition system with coil-out energy up to 100 mJ might not be sufficient to establish a self-sustained flame kernel under lean combustion with strong in-cylinder flow motion. Further increase of the discharge current will decrease the voltage across the spark gap, which will affect the calculation of the energy delivered to the spark gap. In this paper, the relationship between the discharge current and gap voltage is investigated, and it is discovered that the spark energy doesn,t increase monotonously with the increase of the discharge current. However, engine test results still indicate a positive impact of discharge current amplitude on the engine performance.
Technical Paper

Active Plasma Probing for Lean Burn Flame Detection

2023-04-11
2023-01-0293
Combustion diagnostics of highly diluted mixtures are essential for the estimation of the combustion quality, and control of combustion timing in advanced combustion systems. In this paper, a novel fast response flame detection technique based on active plasma is introduced and investigated. Different from the conventional ion current sensing used in internal combustion engines, a separate electrode gap is used in the detecting probing. Further, the detecting voltage across the electrode gap is modulated actively using a multi-coil system to be slightly below the breakdown threshold before flame arrival. Once the flame front arrives at the probe, the ions on the flame front tend to decrease the breakdown voltage threshold and trigger a breakdown event. Simultaneous electrical and optical measurements are employed to investigate the flame detecting efficacy via active plasma probing under both quiescent and flow conditions.
Technical Paper

Characterization of an Integrated Three-Way Catalyst/Lean NOx Trap System for Lean Burn SI Engines

2023-10-31
2023-01-1658
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion

2023-10-31
2023-01-1644
Compression ignition engines used in heavy-duty applications are typically powered by diesel fuel. The high energy density and feedstock abundance provide a continuing source for the immense energy demand. However, the heavy-duty transportation sector is challenged with lowering greenhouse gas and combustion by-product emissions, including carbon dioxide, nitrogen oxides, and particulate matter. The continuing development of engine management and combustion strategies has proven the ability to meet current regulations, particularly with higher fuel injection pressure. Nonetheless, a transition from diesel to a renewable alternative fuel source will play a significant role in reducing greenhouse gases while maintaining the convenience and energy density inherent in liquid fuels. Dimethyl ether is a versatile fuel that possesses combustion properties suitable for compression ignition engines and physical properties helpful for clean combustion.
Technical Paper

Effect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine

2021-04-06
2021-01-0478
Meeting the increasingly stringent emission and fuel efficiency standards is the primary objective of the modern automotive research. Lean/diluted combustion is a promising avenue to realize high-efficiency combustion and reduce emissions in SI engines. Under diluted conditions, the flame propagation speed is reduced because of the reduced charge reactivity. Enhancing in-cylinder charge motion and turbulence, and thereby increasing the flame speed, is a possible way to harness the combustion process in SI engines. However, charge motion can have a significant effect on the spark ignition process because of the reduced discharge duration and frequent restrikes. A longer discharge duration can aid in the formation of a self-sustained flame kernel and subsequent stable ignition. Therefore, an empirical study is undertaken to investigate the effect of discharge duration and ignition timing on the ignition and early combustion in a port fueled SI engine, operated under lean conditions.
Technical Paper

Characteristics of Three-way Catalyst during Quickly Start-up Process in a PFI Engine for HEV Application

2009-04-20
2009-01-1325
The characteristics of three-way-catalyst during engine start process were investigated based on a simulated start/stop test system for HEV application. Although the catalyst has already reached its light-off temperature, the conversion efficiency is poor during engine start process due to the deviation of lambda from stoichiometric. The high concentration hydrocarbon emission spike can be stored by catalyst substrate temporarily, then it is released. This dynamic process decreases the conversion efficiency for the following exhaust hydrocarbon emission. When the initial temperature of catalyst substrate before engine start increased from 150°C to 400°C, the conversion efficiency for both the hydrocarbon and NO are increased.
Journal Article

Preliminary Investigation of Exhaust Pressure Waves in a Single Cylinder Diesel Engine and the Impacts on Aftertreatment Sprays

2017-03-28
2017-01-0616
The pressure wave actions were investigated in the exhaust system of a single cylinder diesel engine through both experimental and simulation methods. The characteristics of the exhaust pressure waves under different engine operating conditions, such as engine load and exhaust backpressure, were examined. The results showed that the strength of the exhaust pressure wave was affected by both the in-cylinder pressure and the exhaust backpressure in the exhaust system during the period when the exhaust valves were open. The exhaust gas flow velocity was also estimated by the one dimensional simulation tool AVL BOOST™. The results suggested that the velocity of the exhaust gas fluctuated during the engine cycle, and followed trends similar to the exhaust pressure wave. The transient gas flow velocity was high when there was a strong compression wave, and it was reduced when the pressure fluctuations in the exhaust manifold were small.
Technical Paper

Effective Ignition of Lean Methane/Hydrogen Mixture in a Rapid Compression Machine

2023-04-11
2023-01-0255
The use of renewable natural gas and green hydrogen can significantly reduce the carbon footprint of engines. For future spark ignition engines, lean burn strategy and high compression ratio need to be adopted to further improve thermal efficiency, reducing energy consumption. The efficacy of the ignition system is essential to initiate self-sustainable flame under those extreme conditions. In this work, a rapid compression machine is employed to compress air-fuel mixture to engine-like boundary conditions before the spark event to experimentally investigate the ignition and combustion characteristics of the methane-air mixtures under extreme lean conditions. Hydrogen is also added to support the ignition process and enhance flame propagation speed. Lean methane-air mixtures with excess air ratio up to 2.8 are used, with 10 vol% hydrogen addition into the methane fuel. The ignition criteria under various ignition strategies are explored.
Technical Paper

Investigation of Dimethyl Ether Dual-Fuel Combustion Using Propane and Ethanol as Premixed Fuel

2023-09-29
2023-32-0018
The combustion and emission characteristics of dual-fuel combustion were investigated using dimethyl ether direct injection and premixed low-carbon fuels. Dimethyl ether was used as the direct injection fuel for its high reactivity and low propensity to form particulate matter. Ethanol and Propane, two fuels of low reactivity, were premixed in the intake port. An injection timing sweep of varying premixed energy shares and engine loads was tested. Combustion analysis was conducted based on in-cylinder pressure measurements while detailed speciation of engine-out emissions was performed via FTIR. The proper injection advance and premixed energy share can realize low NOx and high combustion efficiency. Ethanol showed stronger impact to DME ignition delay as compared with propane.
Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile

2024-04-09
2024-01-2702
The majority of transportation systems have continued to be powered by the internal combustion engine and fossil fuels. Heavy-duty applications especially are reliant on diesel engines for their high brake efficiency, power density, and robustness. Although engineering developments have advanced engines towards significantly fewer emissions and higher efficiency, the use of fossil-derived diesel as fuel sets a fundamental threshold in the achievable total net carbon reduction. Dimethyl ether can be produced from various renewable feedstocks and has a high chemical reactivity making it suitable for heavy-duty applications, namely compression ignition direct injection engines. Literature shows the successful use of DME fuels in diesel engines without significant hardware modifications.
Technical Paper

Effect of Spark Assisted Compression Ignition on the End-Gas Autoignition with DME-air Mixtures in a Rapid Compression Machine

2024-04-09
2024-01-2822
Substantial effort has been devoted to utilizing homogeneous charge compression ignition (HCCI) to improve thermal efficiency and reduce emission pollutants in internal combustion engines. However, the uncertainty of ignition timing and limited operational range restrict further adoption for the industry. Using the spark-assisted compression ignition (SACI) technique has the advantage of using a spark event to control the combustion process. This study employs a rapid compression machine to characterize the ignition and combustion process of Dimethyl ether (DME) under engine-like background temperature and pressures and combustion regimes, including HCCI, SACI, and knocking onsite. The spark ignition timing was swept to ignite the mixture under various thermodynamic conditions. This investigation demonstrates the presence of four distinct combustion regimes, including detonation, strong end-gas autoignition, mild end-gas autoignition, and HCCI.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
X